正在阅读:人工智能走向边缘,新技术提供范式转变

人工智能走向边缘,新技术提供范式转变

2021-04-25 10:22:40来源:千家网 关键词:人工智能机械学习阅读量:23291

导读:在人类智能继续领先的同时,Edge AI也为安防集成商和最终用户带来了多种好处……
  人工智能(AI)执行服务、识别模式、学习对象与情况之间的关系并做出决策。新的成熟的技术(例如5G、热效率高、低功耗的AI芯片组和AI本身)提供了一种范式转变,推动了全球监视和IoT传感器市场的发展。
 
  当我们要求语音助手搜索我们最喜欢的节目时,我们通常会首先得到我们想要的选择。车辆制造商正在开发先进的驾驶员辅助系统(ADAS),例如自动紧急制动(AEB),其目标是创建避免与行人和骑车者碰撞的发生。幸运的是,安防行业承担的任务不那么紧急重要,例如识别对象、潜在威胁和适当的威慑响应。
 
  幸运的是,我们的行业正在利用更高效的AI芯片组和Edge AI传感器(如LiDAR和热成像)的可用性,所有这些产品的价格都在下降。具有改进的热管理功能的AI芯片组,例如在CES 2021上推出的Ambarella CV5,支持四个独立的4K视频流、AI功能、低功耗5nm工艺。这将是在流式传输和识别过程争夺资源的情况下,在多个车道中产生“不连贯”视频的动力不足的IP摄像机处理车辆自动车牌识别(ANPR)的答案。
 
  人工智能挑战
 
  深度神经网络(DNN)需要大量数据来学习。安防解决方案本身不是“智能的”;他们利用对情景意识报告(sitrep)和历史数据的深度学习来采取最适当的措施。来自多种格式(可见光、红外、音频、激光)的传感器的数据以及来自环境、社交媒体、犯罪数据集的复杂数据变得越来越庞大,无法通过传统的操作程序进行处理。幸运的是,像ESRI这样的公司提供了链接犯罪、位置和时间的数据集。实际上,现在可以通过灾难响应计划(DRP)免费获得其ArcGIS Insights,以分析COVID-19大流行的影响。
 
  隐私权和数据保留政策确实对某些行业AI解决方案提出了挑战,例如,防止零售业亏损DNN可能需要“回顾”几天的差异视频内容,或者场景中的内容,如在人群移动,产品差异、照明条件等,以“识别”规划,执行和离开商店盗窃现场的人员的基本行为。
 
  随着行业的发展,企业安全和第一响应者可以获取、分析和预测潜在结果并共享数据,以使AI最终执行已学到的基本任务,并为我们提供做出关键决策所需的人力。
 
  “摄取”对于安全行业中的某些人来说可能是一个新术语,但在依赖“大数据”或应用数据科学的市场中使用得很好。为了使您的客户能够利用当今的AI解决方案(尤其是视频监控),开始在周边范围内收集高质量的视频内容以更好地保证质量警报处理和响应将是非常有利的。
 
  在人类智能继续领先的同时,Edge AI为安全管理提供了一定的时间回馈已知流程。
 
  将AI置于视频监控的边缘
 
  通常,对于IP摄像机,现在可以将常见的视频分析功能(如对象识别、区域检测、车牌识别)作为嵌入在摄像机自身中的AI算法使用。可能尚不清楚固件更新如何影响AI,或者是否使用最新的工厂训练模型来更新算法,或者是否保留了针对特定用例的算法训练。
 
  已开发的解决方案全部使用可更新的算法以及白名单和黑名单,例如基础温度/发烧筛查和可视武器检测,以及WhiteFox和Aero Defence的无人机RF签名/行为检测。
 
  但是,许多“ Edge AI”摄像机也可能要求用户具有视频管理系统来更新算法。应提醒用户优先考虑在Edge AI设备或更专业的危险品/无人机检测软件上进行监视投资,而不是在可能成为现收现付服务的可能更孤立的VMS上进行投资。
 
  许多IP摄像机制造商都在宣扬AI功能。以下是一些最近的发展:
 
  松下的i-Pro Extreme摄像机具有内置的AI,可以进行运动检测和分析,以进行精确的对象分类,例如远处人与自行车之间的差异。它可以检测进入受对象类别限制的区域的对象(例如仅行人区域或区域),以及交叉线或游荡检测。松下还为第三方开发人员提供了一个SDK,以添加高级功能,例如武器或跌倒检测。
 
  Hanwha Techwin的Wisenet7芯片组提供了摄像机内置AI功能,包括:基于AI的对象分类,可对检测到的对象、人员、车辆、车牌和面部进行分类;减少误报警报,以改善具有多个摄像头的操作中的监控;一些PTZ摄像机基于AI的对象跟踪;以及跟踪车辆和人员的自动跟踪功能,这是对基于帧的跟踪的改进。
 
  Milesight通过各种摄像机提供基于边缘的AI。功能包括:预训练的深度学习模型和算法的自动连续训练;以及三组算法,包括用于人和车辆检测的视频内容分析(VCA);基于AI算法的实时人数统计和统计报告以进行分析;和AI人脸检测。
 
  Edge AI摄像机的使用意义重大,因为它们可以用作简化但有效的AI训练工作流程的“模型”。
 
  工业摄像机可以高速和近距离捕获车牌,以实现安全和跟踪应用,例如铁路运输和车辆筛选。 IDS NXT摄像机是改进的AI训练以及通过Web应用程序与第三方系统集成的示例(无需其他编码)。该系统可以创建训练图像并将其上传,用户可以分配标签(例如“好”或“坏”),以便AI可以学习。反过来,这将开始神经网络的自动训练,最终导致完全部署。
 
  受Edge AI影响的其他安防领域
 
  正如去年在CES上报道的那样,在小型3D摄像机中使用LiDAR可以提供线框“图像”,既可以保护隐私,又可以识别面部-甚至是被口罩或PPE遮盖的一部分。进一步顺应这一趋势,在2021年CES上推出的英特尔实感ID将主动深度与神经网络、专用的片上系统和嵌入式安全元件相结合,可以加密和处理用户数据。通过深度学习,它可以随着时间的推移适应用户的需求,因为他们会改变身体特征,例如面部毛发和眼镜,或者出现在不同的光照条件下。
 
  一般的安防解决方案中是否最终会包含复杂的条目筛选任务,还有待观察。但是,在安全/安防市场中已经存在基于AI的解决方案,可以执行面部识别和/或面部匹配,而用户戴着口罩、帽子,并且该过程在性别、年龄和种族之间都是一致的。他们还可以利用适当的基础温度测量位置和多光谱成像(通常是可见光加热成像)来进行高温筛查。以及对人员,隐藏式和非隐藏式武器检测,前后、侧面或后方使用的武器的一致性。
 
  关键基础设施可能是危险场所,Edge AI传感器可以扮演救生角色。借助热成像和AI训练,可以及早发现高压电线、可燃化学品、危险废物和其他威胁。当人员进入隧道、铁轨和桥梁等危险区域时,具有AI的LiDAR传感器可以触发警报。
 
  (原标题:AI走向边缘)
我要评论
文明上网,理性发言。(您还可以输入200个字符)

所有评论仅代表网友意见,与本站立场无关。

  • 人工智能在制造业的新浪潮

    调查数据显示,95%的制造企业已经在AI/ML领域投入或计划在未来五年内进行投资。这一比例表明,人工智能应用在制造业中已趋于普及,并正由“试点探索”向“系统化整合”转变。
    人工智能AI赋能智能制造
    2025-10-21 09:25:54
  • 中国生成式人工智能用户规模达5.15亿人,普及率36.5%

    《生成式人工智能应用发展报告(2025)》显示,截至2025年6月,我国生成式人工智能用户规模达5.15亿人,普及率为36.5%。上半年,国产生成式人工智能产品取得显著进步,在春节期间成为社会关注热点,推动生成式人工智能快速渗透。
    人工智能生成式人工智能
    2025-10-20 09:07:04
  • OpenAI联合创始人:人工智能代理真正发挥作用还需10年

    OpenAI联合创始人预估,要系统解决上述所有问题,大约还需要十年时间。尽管众多投资者将2025年称为“智能体之年”,但现实发展仍面临显著挑战。广义上,AI智能体被定义为能够自主执行任务的虚拟助手,具备问题拆解、方案规划与自主实施的能力。
    OpenAI人工智能
    2025-10-20 10:58:05
  • 人工智能和物联网如何协作以实现更智能的技术

    人工智能与物联网的融合代表着科技发展的新方向。物联网通过分布在各处的传感器、设备和网络基础设施,持续生成海量的实时数据。而人工智能则通过机器学习与深度学习算法,对这些数据进行分析、建模与优化。
    人工智能物联网
    2025-10-20 10:57:54
  • 物联网和 Agentic AI 助力未来智能医院

    随着物联网(IoT)与新一代智能体人工智能(Agentic AI)的融合,这一复杂体系正在被重新定义。越来越多的医院开始引入基于实时数据的智能运营模式,使医疗体系逐步从“经验驱动”走向“数据驱动”,甚至是“自主优化”的新阶段。
    医疗应用方案人工智能
    2025-10-17 13:23:02
  • 快讯|HDL与海康威视达成战略合作;特斯联与新华三达成战略合作

    中国智能控制品牌河东科技HDL与安防企业海康威视宣布达成战略合作,双方产品实现互联互通,为海外用户提供更完整的智能生活解决方案;特斯联与新华三正式宣布达成战略合作,双方将集中优势资源,围绕AIoT算力平台打造及异构算力生态建设进行深度合作......
    AIoT算力人工智能
    2025-10-17 11:27:16
版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了