正在阅读:揭秘发现别人未知的数据科学家

揭秘发现别人未知的数据科学家

2016-04-12 10:23:08来源:PConline 关键词:大数据数据科学家阅读量:34380

导读:商业领域的数据科学家和侦探类似,去探索未知的事物。不过,当他们在这个旅程中冒险的时候,他们很容易落入陷阱。
  【中国智能制造网 智造快讯】企业要想保持竞争力,就必须比大数据分析做的更多。如果不去评估企业手中的数据质量,期望的结果,以及预计从这种数据分析中获得多少利润,这将很难正确地找出哪些数据科学项目能够盈利,哪些不能。
 
大数据分析提升企业竞争力 
  商业领域的数据科学家和侦探类似,去探索未知的事物。不过,当他们在这个旅程中冒险的时候,他们很容易落入陷阱。所以要明白,这些错误是如何造成的,以及如何避免。
  
  相关关系和因果关系之间的混乱
  
  大部分的数据科学家在处理大数据时假设相关关系直接影响因果关系。使用大数据来理解两个变量之间的相关性通常是一个很好的实践方法,但是,总是使用“因果”类比可能导致虚假的预测和无效的决定。要想实现利用大数据的好效果,数据科学家必须理解相关关系和根源的区别。关联往往是指同时观察X和Y的变化,而因果关系意味着X导致Y。在数据科学,这是两个完全不同的事情,但是许多数据科学家往往忽视了它们的区别。
  
知彼知己,百战不殆
  基于相关性的决定可能足以采取行动,我们不需要知道原因,但这还是完全依赖于数据的类型和要解决的问题。每位数据科学家都必须懂得——“数据科学中相关关系不是因果关系”。如果两个关系出现彼此相关的情况,也不意味着是一个导致了另一个的产生。
  
  没有选择合适的可视化工具
  
  大部分的数据科学家专心学习于分析的技术方面。他们不能通过使用不同的可视化技术理解数据,即那些可以令他们更快获得洞察力的技术。如果数据科学家不能选择合适的可视化发展模型,监控探索性数据分析和表示结果,那么即使是好的机器学习模型,它的价值也会被稀释。事实上,许多数据科学家根据他们的审美选择图表类型,而不是考虑数据集的特征。这个可以通过定义可视化的目标避免。
  
  无问题/计划的分析
  
  数据科学是一个结构化的过程,以明确的目标开始,随后出现一些假设的问题,终实现我们的目标。数据科学家往往站在数据之上而不考虑那些需要分析回答的问题。数据科学项目必须要有项目目标和的建模目标。数据科学家们如果不知道他们想要什么,终的结果也会差强人意。
  
  为了避免这种情况,数据科学家应该集中精力获得正确的分析结果,这可以通过明确实验,变量和数据准确性和清晰明白他们想要从数据中获得什么实现。这将简化以往通过满足假设的统计方法来回答商业问题的过程。先确定明确的问题是及其重要的,能够实现任何企业的数据科学目标。
  
  仅关心数据
  
  数据科学家常常因为得到来自多个数据源的数据而兴奋,并开始创建图表和可视化来做分析报告,忽视发展所需的商业智慧。这对任何组织来说都是危险的事情。数据科学家经常给与数据太多决策制定的权力。他们不够重视发展自身商业智慧,不明白分析如何令企业获益。数据科学家应该不仅仅让数据说话,而且善于运用自身的智慧。数据应该是影响决策的因素而不是数据科学项目决策制定的终声音。企业雇佣的数据科学家应该是可以将领域知识和技术特长结合起来的,这是避免错误的理想情况。
  
  忽视可能性
  
  数据科学家经常倾向性忘记方案的可能性,这将导致作出更多的错误决策。数据科学家经常犯错,因为他们经常说,如果企业采取了X操作一定会实现Y目标。对于特定的问题这没有的答案,因此要确认数据科学家从不同可能性中所做的选择。对指定问题存在不止一个可能性,它们在某种程度是不确定的。情景规划和可能性理论是数据科学的两个基本核心,不应该被忽视,应该用以确认决策制定的准确性频率。
我要评论
  • 人工智能+大数据:2025年它们如何塑造企业

    “2025 年商业中的人工智能与大数据”如今已成为竞争优势的代名词。人工智能 (AI) 与大数据的融合正在通过预测分析、个性化服务和自动化运营重塑全球经济的各个领域。
    人工智能大数据
    2025-09-16 10:29:40
  • 中国大数据规模未来5年增速世界第一 全球占比10%

    中国大数据市场表现格外亮眼,预计2029年中国大数据IT支出规模为730.2亿美元,全球占比约10%。
    大数据大数据技术
    2025-09-12 11:44:02
  • 新华三与广东电信深化战略合作 共拓数字经济新蓝海

    多年来广东电信与新华三一直保持着良好的合作关系,取得丰硕成果。期待双方在传统云网合作基础上,共同探索先进算力网络建设,协力深耕粤港澳大湾区数字化沃土。
    数字经济大数据
    2025-07-11 11:40:07
  • 物流智能转型新引擎:DeepSeek+物流

    DeepSeek 物流不仅是技术的革新,更是城市发展的重要推动力。它通过智能化手段提升物流效率、优化资源利用、减少环境影响,并为智慧城市建设提供支撑。未来,随着AI技术的不断进步,物流行业将迎来更深刻的变革。
    物流大数据服务平台
    2025-04-30 10:11:15
  • 2025年4月1日开始施行的重要新规一览

    四月,一系列新规定即将实施,包括《公共安全视频图像信息系统管理条例》、《车联网网络安全异常行为检测机制》等。
    大数据服务平台
    2025-04-02 09:31:36
  • 铁塔大数据灾害分析平台:提升自然灾害智能化预警水平

    目前,我国灾害预防面临着监测预警网络不健全、实效性不高、精准性不强,“三断”(断路、断网、断电)无法及时发现等问题,亟需建立防灾减灾预警网络,实现“灾后救助”向“灾前预防”转变的目标。
    大数据灾害分析平台
    2025-03-19 10:47:45
版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了