【中国智能制造网 技术前沿】在云上运行Hadoop,很多人担心性能。因为一提到虚拟化就会有人想到有成本,往往得出有偏见的结论-在云上运行肯定比物理机器上运行性能差。如果单独把10台物理机虚拟化跑Hadoop,这肯定是有部分性能的开销的。但是如果在公共云上,情况就不是这样了。因为公共云虚拟化的开销终是由平台方来承担的,其一是平台方采购机器有规模优势,其二平台方可以在保证虚拟机性能的情况超卖部分资源。
云上运行Hadoop 哪些问题需注意?
平台卖给用户8core32g的虚拟机就保证有这个规格的能力的。结合云上的弹性优势,企业的总体成本是会下降的。
在云上运行Hadoop对平台方还是面临一些挑战的,下面主要讲述这些挑战及平台方怎么解决的。
云上Hadoop的挑战-Shuffle Shuffle分为Push模式,Pull模式。Push模式就是直接通过网络发送到下一个节点,比如:storm、flink。Pull模式就是数据先存储在本地,再启动下一个节点拉取数据,比如:HadoopMR、Spark。
在push模式下,主要瓶颈点是网络。在一般的云环境中,网络跟线下没有太多的区别,可以满足需求。
在pull模式下,主要瓶颈点是磁盘。在云环境中,会提供本地磁盘或者用SDD加速的方案。如下:
SDD加速方案
另外:
根据spark社区的报告,在机器学习等很多场景下,瓶颈点现在是
CPU了
云上Hadoop的挑战-数据本地化
数据本地化含义是分析时,把计算移动到数据节点的。如果计算存储分离,则存在数据放在OSS中,需要从OSS远程拉取数据。一般情况下,认为这样会有性能问题。
从OSS远程拉取数据
版权与免责声明:
凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。
本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。
鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。