正在阅读:大数据分析状况频发 你做好充足准备了吗?

大数据分析状况频发 你做好充足准备了吗?

2016-06-24 09:38:35来源:大数据洞察 原标题:解惑 | 如何应对大数据分析的各种问题 关键词:大数据数据分析技术贴阅读量:31520

导读:大数据的分析方法在大数据领域就显得尤为重要,可以说是决定终信息是否有价值的决定性因素。那么在执行过程中通常会遇到哪些问题,我们该如何应对呢?
  【中国智能制造网 技术前沿】越来越多的应用涉及到大数据,而这些大数据的属性,包括数量、速度、多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定终信息是否有价值的决定性因素。那么在执行过程中通常会遇到哪些问题,我们该如何应对呢?

大数据分析状况频发 你做好充足准备了吗?
  
  放慢脚步回头看路
  
  初创公司里的人们仿佛一直在被人念着紧箍咒:“要么快要么死。”他们是如此着急于产品开发,以至于他们常常没有空想用户对产品的具体使用细节,产品在哪些场景怎么被使用,产品的哪些部分被使用,以及用户回头二次使用产品的原因主要有哪些。而这些问题如果没有数据难以回答。
  
  你没有记录足够的数据
  
  光给你的团队看呈现总结出来的数据是没有用的。如果没有到日乃至小时的变化明细,你无法分析出来数据变化背后看不见的手。如果只是粗放的,断续的统计,没有人可以解读出各种细微因素对于销售或者用户使用习惯的影响。
  
  与此同时,数据储存越来越便宜。同时做大量的分析也不是什么高风险的事情,只要买足够的空间就不会有系统崩溃的风险。因此,记录尽可能多的数据总不会是一件坏事。
  
  不要害怕量大。对于初创企业来说,大数据其实还是比较少见的事情。如果正处于初创期的你果真(幸运地)有这样的困扰,推荐使用Hadoop平台。
  
  及时解答团队成员的疑惑
  
  许多公司以为他们把数据扔给Mixpanel,Kissmetrics,或者Google Analytics就够了,但他们常常忽略团队的哪些成员能真正解读这些数据的内在含义。你需要经常提醒团队里面每位成员多去理解这些数据,并更多地基于数据来做决策。否则,产品团队只会盲目地开发产品,并祈祷能踩中热点,不管终成功还是失败都是一头雾水。
  
  这就像有天你决定采用市场上常见的病毒营销手段吸引新用户。如你所愿,用户量啪啪啪地上来了。可此时你会遇到新的迷茫:你无法衡量这个营销手段对老用户的影响。人们可能被吸引眼球,注册为新用户,然后厌倦而不再使用。你可能为吸引了一帮没有价值的用户付出了过高的代价。而你的产品团队可能还在沾沾自喜,认为这个损害产品的营销手段是成功的。这种傻错误经常发生。而如果你的企业在一开始就建立起人人可自助使用的数据平台,来解答他们工作中重要的疑惑,则可以避免上文所说的悲剧。
  
  把数据存放在合适的地方
  
  很多公司把数据发给外包商储存,然后就当甩手掌柜了。可是常常这些数据到了外包商手里就会变成其他形式,而转化回来则需要不少工序。这些数据往往是某些宣传造势活动时期你的网站或者产品的相关数据。结合日常运营数据来看,你可以挖掘哪些活动促成了用户转化。而这样结合日常运营数据来分析用户使用历程的方式是至关重要的。但令人震惊的是,尽管任何时期的所有运营数据都至关重要,许多公司仍不屑于捕获及记录他们。约一半以上Porterfield所见过的公司都将日常运营数据与活动数据分开来看。这样严重妨碍了公司正确地理解与决策。
  
  不拘泥于一个系统
  
  任何一个好的数据分析框架在设计之初都必须满足长期使用的需要。诚然,你总是可以调整你的框架。但数据积累越多,做调整的代价越大。而且常常做出调整后,你需要同时记录新旧两套系统来确保数据不会丢失。
  
  因此,我们好能在天就把框架设计好。其中一个简单粗暴有效地方法就是所有能获取的数据放在同一个可延展的平台。不需要浪费时间选择一个优解决方法,只要确认这个平台可以装得下所有将来可能用到的数据,且跨平台也能跑起来就行了。一般来说这样的原始平台能至少支撑一到两年。
  
  不过度总结
  
  这个问题对于拥有大数据分析团队的公司来说更常见。试想一下,有多少公司只是记录平均每分钟多少销售额,而不是具体每一分钟销售了多少金额?在过去由于运算能力有限,我们只能把海量数据总结成几个点来看。但在当下,这些运算量根本不是问题,所有人都可以把运营数据到分钟来记录。而这些的记录可以告诉你海量的信息,比如为什么转化率在上升或者下降。
  
  人们常常自我陶醉于做出了几张漂亮的图标或者PPT。这些总结性的表达看上去很令人振奋,但我们不应该基于这些肤浅的总结来做决策,因为这些漂亮的总结性陈述并不能真正反映问题的实质。
  
  相反,我们更应该关注值。
我要评论
  • 戴尔科技智能数据平台加速企业现代化转型

    作为戴尔科技智能数据平台的存储引擎, Dell PowerScale兼具网络附加存储 (NAS) 的简便性与高并行性能,能够高效支撑包括微调、推理等多种现代化工作负载。
    智能数据平台数据分析
    2025-10-23 09:13:38
  • 人工智能+大数据:2025年它们如何塑造企业

    “2025 年商业中的人工智能与大数据”如今已成为竞争优势的代名词。人工智能 (AI) 与大数据的融合正在通过预测分析、个性化服务和自动化运营重塑全球经济的各个领域。
    人工智能大数据
    2025-09-16 10:29:40
  • 人工智能与数据分析如何重塑数字营销的未来

    随着企业加速拥抱这些技术,营销策略正逐步从单一渠道的被动响应,演变为更复杂、更智能化和更具前瞻性的体系。这一转变不仅推动了营销个性化与自动化的深化,也为2025年及以后数字经济时代的变革性增长奠定了基础。
    人工智能数据分析数字营销
    2025-09-16 10:26:48
  • 中国大数据规模未来5年增速世界第一 全球占比10%

    中国大数据市场表现格外亮眼,预计2029年中国大数据IT支出规模为730.2亿美元,全球占比约10%。
    大数据大数据技术
    2025-09-12 11:44:02
  • 新华三与广东电信深化战略合作 共拓数字经济新蓝海

    多年来广东电信与新华三一直保持着良好的合作关系,取得丰硕成果。期待双方在传统云网合作基础上,共同探索先进算力网络建设,协力深耕粤港澳大湾区数字化沃土。
    数字经济大数据
    2025-07-11 11:40:07
  • 如何利用人工智能和数据分析实现可持续绿色技术

    人工智能和数据分析为实现可持续绿色技术提供了强大的支持。通过优化资源利用、推动绿色创新和智能环境监测与保护,AI和数据分析在多个领域发挥了重要作用。
    人工智能数据分析绿色技术
    2025-06-10 15:37:59
版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了