我们正降落到一片新大陆。深度学习带来的这场重大技术革命,有可能颠覆过去20年互联网对技术的认知,实现技术体验的跨越式发展。
那么,深度学习到底是什么?怎么理解它的重要性?
我们先从概念和现象入手。
我总结了一句话,学术上看未必严谨,但从我的理解角度看——深度学习是基于多层神经网络的,海量数据为输入的,规则自学习方法。
这里包含了几个关键词:
个关键词叫多层神经网络。
深度学习所基于的多层神经网络并非新鲜事物,甚至在80年代被认为没前途。但近年来,科学家们对多层神经网络的不断算法优化,使它出现了突破性的进展。
以往很多算法是线性的。而这世界上大多数事情的特征是复杂非线性的。比如猫的图像中,就包含了颜色、形态、五官、光线等各种信息。深度学习的关键就是通过多层非线性映射将这些因素成功分开。
那为什么要深呢?多层神经网络比浅层的好处在哪儿呢?
简单说,就是可以减少参数。因为它重复利用中间层的计算单元。我们还是以认猫为例好了。它可以学习猫的分层特征:底层从原始像素开始学习,刻画局部的边缘和纹;中层把各种边缘进行组合,描述不同类型的猫的器官;高层描述的是整个猫的全局特征。
它需要超强的计算能力,同时还不断有海量数据的输入。特别是在信息表示和特征设计方面,过去大量依赖人工,严重影响有效性和通用性。深度学习则彻底颠覆了“人造特征”的范式,开启了数据驱动的“表示学习”范式——由数据自提取特征,计算机自己发现规则,进行自学习。
你可以理解为——过去,人们对经验的利用,靠人类自己完成。在深度学习呢?经验,以数据形式存在。因此,深度学习,就是关于在计算机上从数据中产生模型的算法,即深度学习算法。
问题来了,几年前讲大数据,以及各种算法,与深度学习有什么区别呢?
过去的算法模式,数学上叫线性,x和y的关系是对应的,它是一种函数体现的映射。但这种算法在海量数据面前遇到了瓶颈。上的ImageNet图像分类大赛,用传统算法,识别错误率一直降不下去,上深度学习后,错误率大幅降低。在2010年,获胜的系统只能正确标记72%的图片;到2012年,多伦多大学的GeoffHinton利用深度学习的新技术,带领团队实现了85%的准确率。2015年的ImageNet竞赛上,一个深度学习系统以96%的准确率次超过了人类(人类平均有95%的准确率)。
计算机认图的能力,已经超过了人。尤其图像和语音等复杂应用,深度学习技术取得了优越的性能。为什么呢?其实就是思路的革新。

智能制造网APP
智能制造网手机站
智能制造网小程序
智能制造网官微
智能制造网服务号











智能控制
机器人
仪器仪表
物联网
3D打印
工业软件

回放




浙公网安备 33010602000006号
智能制造网APP
智能制造网小程序
微信公众号


