正在阅读:知己知彼:美国服务机器人技术路线图详解

知己知彼:美国服务机器人技术路线图详解

2016-08-02 10:36:40来源:机器人圈 原标题:【深度解析】美国服务机器人技术路线图 关键词:机器人服务机器人技术路线图阅读量:32446

导读:美国颁布了《美国机器人技术路线图》,其中服务机器人作为单独的一章来重点论述。知己知彼,了解美国的发展动向,可更好地帮助我们与时俱进。
  【中国智能制造网 学术论文】服务机器人正在以高速的增长速度加速步入我们的日常生活。根据IFR的新统计,未来三年内,服务机器人市场规模将达到目前的5倍。正是基于广阔的市场前景,美国国家科学基金会颁布了《美国机器人技术路线图》,其中服务机器人作为单独的一章来重点论述。知己知彼,了解美国服务机器人发展动向,可更好地帮助我们与时俱进。
  
  知己知彼:美国服务机器人技术路线图详解
  
  服务机器人是一类用以辅助人们日常工作、生活、休闲,以及帮助残疾人与老年人的机器人系统。在工业机器人系统中,机器人的任务是完成高质量、高一致性的生产任务。服务机器人与之不同的是,工业机器人通常工作在有人的空间或者会直接同人类协作工作,服务机器人通常从事专业服务和个人服务两种工作。
  
  服务机器人的专业服务主要应用于农业、应急反应、管道、基础设施、林业、运输、专业清理等作业领域。(专业服务机器人也服务于军事领域,但不将其列入本报告)。这些系统增强了人们在上述领域的作业能力。根据IFR/VDMA的报告,当前有超过110000台专业机器人分布在世界各个领域,并且其市场规模还在逐年急速扩大。图1中列出了几种专业机器人。
  
  而个人服务机器人,则在家庭中用以协助普通人的日常生活,或用以补足相关人士的生理和心理缺陷。到目前为止,大数量的个人服务机器人是家用真空清洁机器人(扫地机器人),超过600万台iRobot公司的Roomba机器人遍布在世界各地。同时,这个市场正在以每年超过60%的速度增长。此外,越来越多的机器人正用于个人娱乐,如人工宠物(AIBO)和玩偶等。在过去5年中,售出的个人娱乐机器人超过400万台,这个市场正以指数倍增长,并有望成为机器人领域具潜力的增长点之一。图2列出了部分个人服务机器人系统。在2011年,服务机器人市场总值超过42亿美元。
  
  服务机器人专家组均来自专业和个人服务机器人领域,其研究领域覆盖了非常广泛的机器人应用问题。
  
  战略发现
  
  经过广泛讨论后,专家们一致同意,我们仍然需要10到15年时间才能实现全尺寸且具有通用自主能力的机器人应用和解决方案。一些需要实现的关键技术问题将在后续章节进行讨论。出席代表达成了更进一步的共识,即技术进步使得一些价格可负担的、有限尺寸的、半自主的解决方案具有了实用性,并且提供了实际的应用价值。基于现有技术的商业化产品和应用已经开始出现,企业家和投资人对实现机器人应用的潜能均表示乐观。与会专家确认了几个市场,这些市场出现了早期的商业解决方案,以及服务机器人有可能以何种方式在这些市场中得到应用。
  
  老龄化人口从两个方面影响了服务机器人的发展。其一是劳动力市场的缩水,另外一个因素则是提供满足健康护理需要的解决方案的机遇。如图3所示,美国正处于未来20年发展趋势的入口:退休工人数量占当前劳动力数量的百分比将近翻倍,即从当前的每10个工人中有2个退休的状态演变为2030年的每10个工人中有4个退休的状态。在日本,这种情况则更加糟糕,快速增长的老龄化人口是日本提出发展机器人技术作为国家政策的主要诱因。
  
  当提高生产率和降低成本成为服务机器人的共同特征时,针对市场特定问题或需求,人们希望每个服务机器人系统能提供的、有竞争力的解决方案。比如,在使用机器人技术组装汽车的工厂中,一个关键和主要的驱动力是希望得到持续不断且质量得到充分保证的生产能力。
  
  主要市场及驱动来源
  
  医疗保健与生活质量——机器人技术用于提供遥操作解决方案,比如依赖感觉的达芬奇手术系统就是这类系统的代表。机器人技术拥有巨大潜力,用以控制成本,增强健康人员的护理能力,延长老年人的寿命。
  
  能源与环境——与会学者认为,这两个紧密相连的问题对于国家的未来和机器人技术应用的成熟度是非常关键的,尤其在自动获取能源和环境监测方面非常关键。
  
  生产与物流——与会学者认为,机器人技术在促进生产和货物移动自动化方面拥有巨大潜力,特别是机器人技术被用于小尺度(或微尺度)生产操作,且在这一过程中有助于加速制造业回归。这种信念自从HeartlandRobotics的创立就可窥见一斑,该公司的主要任务就是将制造业转移回美国。
  
  汽车和运输——虽然我们距离完全自主驾驶汽车的使用还有数十年的时间,但机器人技术已经以驾驶辅助和避碰系统的形式出现。公共输运系统是另外一个有望获得更高自动化程度的领域。随着机器人技术的持续进步和成熟,用于小范围场景,如机场的无人运输系统和解决方案将渐渐地适应市中心的情况,以及其他的一般应用场合。
  
  国土安全和基础设施防护——与会学者认为,机器人技术提供了巨大的潜能,用以边境保护、搜索和援救、港口检测和安保及相关领域。此外,机器人技术有望大量用于自动化检测、保养并维护桥梁、高速公路、水源和排水系统、电力管道和设施,以及其他基础设施的关键组成部分。
  
  娱乐与教育——这个领域比其他任何领域更多地实现了机器人技术的转化,尤其是机器人技术在解决国家面临的科学、技术、工程以及数学(记为“STEM”)危机,同时成为名副其实的“4R”教育。FIRST的巨大成功印证了这一点。FIRST是成立于1989的一个非营利组织,该组织举办国家范围内的机器人竞赛,激发年轻人成为科学和技术领导人的兴趣,同时通过引入机器人而增加受教育者的积极性。机器人为孩子们提供令其感兴趣且易学的方式,去学习和应用数学以及科学的基本知识,包括工程和系统集成原理,用以生产智能机器完成特定任务。
  
  商业化影响因素
  
  如果上述领域全部实现,那么就需要大量的投资用于扩展和开发机器人技术。正如上面提到的,距离实现完全自主的机器人技术,即无需人类给予指令或干涉的自动运行机器人技术,仍有很长的一段路。与会学者达成了一致的意见,即机器人技术的进步使得开发和市场化机器人的初级产品和应用成为了可能,并且能够显著“增强人类机能”。
  
  这些解决方案将能够根据下列功能进行自动调整:以确定的方式监督动态物理环境、目标识别、探测变化、感知环境状态、分析和推荐根据检测到的情况作出的响应,根据人的命令作出的响应和在预先授权的边界内自动而不被操作员干预地执行行动。
  
  这类机器人解决方案的例子包括遥操作系统。如达芬奇外科手术系统以及自主的专业机器人,比如Roomba。随着互联网继续发展,自然而然会从远距离传感发展到远距离操作。互联网这种向物理世界的扩展将有助于进一步模糊通信、计算和服务之间的界限,激发远距离通信和遥控参与的应用。更符合实际的解决方案将出现,其具备分布认知能力并能够有效利用人类智能。这类解决方案将与机器人技术结合,在实现自主感知位置的同时,允许操作员从远距离根据需要通过互联网进行干预。
  
  根据上述内容,人口老龄化将导致未来劳动力短缺。当工人们寻求向职业更高层级迈进的时候,需要增加底层工作的自动化程度,而做底层工作的工人会慢慢变少甚至消失。长期范围内实现完全自动化解决方案的挑战会继续因为技术限制而存在,短期挑战则是调查其发展的需求和决定如何好地“跨越鸿沟”。即识别正确的价值主张、成本的降低、有效的开发、有效的系统工程过程,决定如何对解决方案进行佳整合,以及如何将科技转化成为产品。
  
  科学和技术挑战

  
  一部分与会学者集中讨论并确定了同前述几节应用和商业化紧密相关的科学与技术挑战。本节重点在描述挑战,并没有提出如何解决这些挑战的路线图,路线图梗概将在下节中提出。
  
  移动能力
  
  移动能力是机器人研究中的一个成功范例。这种成功在许多现实环境中展示性能的系统上均有所体现,包括博物馆导游和DARPA机车挑战赛以及城市挑战赛中的自主驾驶汽车。但是,与会学者一致认为还有大量重要的问题仍旧悬而未决。在移动领域找到这些问题的答案将对机器人相关领域实现自主控制和多用途相当重要。
  
  与会学者认为三维导航是移动领域重要的挑战之一。目前,大多数映射定位和导航系统都依赖于地球的平面表示,比如地面任务中涉及的街区地图。但是,当机器人应用的复杂性增加,且每天都有新的机器人部署的情况下,在未建模的缺少控制的拥挤环境中,这些二维表示不足以捕捉必要的信息。因此,对于支持导航和操作的三维世界模型的获取将是非常重要的。这些三维表示不应当包括世界的几何布局;相反,地图一定要包含涉及环境中物体及其特征的任务相关的语义信息。
  
  目前,机器人已经能够很好地理解物理世界中物体的位置,但是还不了解或很少知道物体是什么。当涉及抓取和环境表示的服务执行移动功能时,环境表示也应当包括对象情景支持(即机器人能用某个物体干什么的信息)。实现语义三维导航将需要传感、感知、地图匹配、定位、对象识别、情景支持识别和规划的新方法。这些要求中的一些内容将在后续章节中进行更为详细的讨论。
 
我要评论
版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了