正在阅读:2016年深度学习进展综述 挖掘其大潜力

2016年深度学习进展综述 挖掘其大潜力

2016-12-15 09:29:24来源:大数据杂谈 编辑:沐子飞 关键词:深度学习机器学习自动编码器阅读量:32373

导读:历史上研究人员所努力的主要挑战之一是无监督学习 。我们认为2016年对于这一领域来说是一个伟大的一年,主要是因为在生成模型上进行了大量工作。
  【中国智能制造网 智造快讯】深度学习在机器学习领域中一直是核心话题,在过去几年和2016年也是如此。在本文中将阐述我们认为该领域中有贡献(或有潜力)的进展,以及组织和社区如何确保这些强大的技术对所有人都有利。

 

2016年深度学习进展综述 挖掘其大潜力

历史上研究人员所努力的主要挑战之一是无监督学习 。我们认为2016年对于这一领域来说是一个伟大的一年,主要是因为在生成模型上进行了大量工作。

此外,自然地与机器交流的能力也是梦想目标之一,并且诸如Google和Facebook之类的巨人已经提出了几种方法。在这方面,2016年所有关于自然语言处理(Natural Language Processing,NLP)问题的创新,是实现这一目标的关键。

无监督学习
  
无监督学习是指从原始数据中提取模式和结构,无需额外信息的任务,而不是需要标签的监督学习。

对于这个问题,使用神经网络的经典方法是自动编码器(autoencoders)。基本版本由多层感知器(Multilayer Perceptron,MLP)组成,其中输入和输出层具有相同的尺寸大小,并训练较小的隐藏层以恢复输入。一旦训练完毕,从隐藏层的输出对应于可用于聚类、维数降低、改进监督分类甚至用于数据压缩的数据表示。

生成式对抗网络(GAN)
  
近年来出现了基于生成模型的新方法。所谓生成式对抗网络,它能够解决模型无监督学习的问题。GAN是一场真正的革命,这种研究带来了深远的影响。在这个演示视频中,Yann LeCun(深度学习的创始人之一)说,GAN在过去20年里,是机器学习重要的思想。

虽然生成式对抗网络早在2014年由Ian Goodfellow提出,但直到2016年,GAN才开始显示出真正的潜力。改进的技术帮助培训和改善体系架构(深卷积GAN),据介绍,今年已经修正了以前的一些局限性。新的应用程序(我们稍后列出其中的一些)展现了它们的强大和灵活性。

直观的想法
  
想象一下,一个有抱负的画家,想做艺术赝品(G),还有人想通过鉴定画作来谋生(D)。你首先给D展示了一些毕加索的画作。然后G制作赝品,试图欺骗D,使其相信是毕加索的原作。有时候会得逞。然而,当D开始熟悉更多毕加索风格(学习更多的样本),G就越来越更难欺骗D,所以他必须做得更好。随着这个过程的持续,不仅D能够很好地分辨出哪个是毕加索的风格,哪个不是;而且G也能得以提高仿毕加索绘画的能力。这就是背后GAN的设想。

技术上来说,GAN由两个网络之间的持续推动(因此“对抗”):一个生成器(generator,G)和一个辨别器(discriminatory,D)。给定一组训练示例(如图像),我们可以想像,有一个底层分布 (x)来管理它们。使用GAN,G将产生输出,并且D将判断它们是否来自训练集合的相同分布。

G将从一些噪声z开始,因此生成的图像是G(z)。D从分布(实际)和伪造的(从G)采用图像和它们进行分类:D(x)和D(G(Z))。

D和G都在同时学习,并且一旦G被训练成它知道足够多的关于训练样本的分布,它可以产生新的样本,有着非常相似的属性:

这些图像由CIFAR-10训练的GAN产生。如果你注意到细节,你可以看到它们确实不是真正的对象。但是,有些东西抓住了某些特征,使它们可以从远处来看很像真实的东西。

InfoGAN
  
近的发展已经将GAN的想法不仅扩展到近似数据分布,还扩展到语义有解的学习、数据的有用向量表示。这些期望的向量表示需要捕获丰富的信息(与自动编码器中相同),并且也需要是可解释的,意味着我们可以区分部分向量,这些部分有助于在生成的输出中的特定类型的形状变换。

OpenAI研究人员在8月提出的InfoGAN模型解决了这个问题。简而言之,InfoGAN能够生成包含有关在无人监督的方式数据集信息表示。InfoGAN能够以无监督的方式生成包含有关数据集信息的表示。例如,当应用于MNIST数据集时,它能够推断数字的类型(1,2,3,……),所生成样本的旋转和宽度,而不需要手动标记数据。

我要评论
  • 人工智能和机器学习如何塑造物联网安全的未来

    人工智能和机器学习系统在模式分析、异常检测和实时决策方面表现出色。这些对于纷繁复杂且不断扩展的物联网生态系统而言,都是优势所在。
    人工智能机器学习物联网安全
    2025-08-04 10:39:11
  • 人工智能和机器学习在工业自动化中的作用

    人工智能(AI)和机器学习(ML)正在推动工业自动化的范式转变,使制造流程更智能、更快速、更高效。预计工业自动化市场规模将从2023年的2056.3亿美元增长到2031年的4274.2亿美元。
    人工智能机器学习工业自动化
    2025-06-03 10:33:09
  • 计算机视觉与机器学习的创新浪潮:开启智能未来

    在这个快速发展的时代,计算机视觉和机器学习的进步正在改变我们与世界互动的方式。未来,随着技术的不断成熟和创新,计算机视觉和机器学习系统将变得更加智能、高效和可靠。
    计算机视觉机器学习
    2025-05-22 09:19:46
  • 未来最值得关注的人工智能和机器学习趋势是什么?

    人工智能和机器学习社区最紧迫的问题之一是道德人工智能系统的开发和实施。随着人工智能技术在我们生活中变得越来越普遍,确保负责任地设计和部署这些系统至关重要。
    人工智能机器学习
    2024-12-23 11:21:00
  • 2025年大数据分析:未来趋势及技术展望

    本文将预测2025年的大数据分析趋势,并找到数据分析中最合适的工具、企业和新兴趋势,从而塑造未来。
    大数据机器学习
    2024-07-29 09:55:05
  • 2024年十大生成式人工智能预测

    展望2024年,生成式人工智能的前景是谨慎乐观的,预计将进一步增强和发展。本文揭示了2024年十大生成式人工智能预测,这些预测有可能改变各个领域的人工智能未来。
    生成式人工智能机器学习
    2024-05-30 09:43:50
版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了