正在阅读:AI产业生态圈再扩容:实现药物研发“去风险”

AI产业生态圈再扩容:实现药物研发“去风险”

2017-01-03 09:58:58来源:动脉网 编辑:二不休 关键词:人工智能医疗大数据阅读量:35440

导读:在药物开发过程中结合人工智能技术,有着提升开发效率的潜力。人工智能不但可以加速时间范围,还可以提高到达后期试验阶段药物的成功概率。
  【中国智能制造网 学术论文】在药物开发过程中结合人工智能技术,有着提升开发效率的潜力。人工智能不但可以加速时间范围,还可以提高到达后期试验阶段药物的成功概率。
  AI产业生态圈再扩容:实现药物研发“去风险”
 
  近年来,机器学习和深度学习的应用领域极速扩张,而数据、更快的硬件、更好的算法则是推动人工智能的进展的三大基石。下文中,小编为您节选了报告中关于人工智能对医疗领域的影响,带您一窥未来医疗的发展方向。报告指出,到2025年,医疗年均成本预计可节约540亿美元。
 
  机器学习在医疗领域中有广泛的应用前景。医疗行业需要丰富且定义明确数据集,也需要随时随地对患者进行监督,而医疗结果也存在着极大的可变性。机器学习可为其中不少的子行业提供获得高额回报的潜力,如药物发现、测试分析、治疗优化和患者监护等。随着人工智能和机器学习的不断整合,人们将有望在新药研发的过程中显著地实现“去风险”,不但将节约每年约260亿美元的研发成本,同时还将提高医疗信息领域的效率,节约的成本价值超过每年280亿美元。
 
  机遇何在?
 
  药物发现与开发。在药物开发过程中结合机器学习,有着提升开发效率的潜力。机器学习不但可以加速时间范围,还可以提高到达后期试验阶段药物的成功概率。Medicxi Ventures的合伙人 David Grainger认为,错误发现率是一个统计学现象,而避免FDR则有可能将后期试验阶段的风险减半。
 
  此外,在药物发现的早期阶段中,现有虚拟筛选的方法名为“高通量筛选”,而它非常容易受到FDR的影响。如果可以将第3阶段试验的风险减半,就可以为大型制药公司节约数十亿美元的成本,影响其超过900亿美元的研发经费并带来有意义的回报,使其能够腾出资源集中于寻找更有潜力的机会。
 
  备注:虚拟筛选也称计算机筛选,即在进行生物活性筛选之前,利用计算机上的分子对接软件模拟目标靶点与候选药物之间的相互作用,计算两者之间的亲和力大小,以降低实际筛选化合物数目,同时提高先导化合物发现效率。
 
  虽然与后期试验相关的巨额费用往往侧重于临床试验的设计元素,但我们认为,将AI/ML应用于优化后期阶段在选择标准、规模和研究长度等方面的决策,也可以实现有意义的效率提高。
 
  医生/医院的效率。由于监管和分裂等原因,美国医疗体系在历史上对新技术的采用一直十分缓慢。除了需要应对系统的挑战,从药物发现到医生和诊所将新药应用于医疗实践之间的过程往往十分漫长且没有连续性。
 
  美国市场研究咨询机构透明市场研究公司的数据显示,美国政府近发布的一系列纳入《美国复苏与再投资法案》的法令,已经推动了诸如电子健康记录等领域的快速增长,市场预计将在2023年达到约300亿美元。数据的聚合,不断改进的数据捕获技术,以及独立医院的不断减少等,已经为数据的大规模利用创造了一个的机遇。这一切也将提高机器学习算法和人工智能的各项功能,以在医疗领域的各个方面改善速度、降低成本和提高精度。
 
  总部设在伦敦的谷歌DeepMind正与英国国民健康服务合作开发一款旨在监测肾脏疾病患者的APP,以及一个前身名为“患者抢救”、旨在支持诊断决策的平台。
 
  任何AI/ML系统的关键都是海量的数据,因此DeepMind和NHS达成了一个数据共享协议,NHS将为DeepMind提供动态的新数据流和历史数据,以用于训练DeepMind的算法。只有有了海量的数据,才有可能对临床数据进行实时分析。当然,如果DeepMind可以随时有效获取患者数据,它所能提供的见解将远远超出肾脏疾病的范围。
 
  痛点何在?
 
  药物发现与开发。医疗领域的重要痛点之一,是药物发现与开发的时间和成本。根据塔夫特药物发展研究中心的数据,一款新药的面市从药物发现到获得FDA批准平均大约需要97个月。虽然对专业技术的持续聚焦可以帮助改善时间跨度,但新药研发的成本却仍在持续增加。德勤的数据显示,自2010年以来,12家主要制药公司的获批药物开发成本已经增加了33%,至约每年16亿美元。
 
  研发回报。生物制药研发的生产力至今仍然是一个充满争议性的话题。开发一款成功药物的成本持续增加,但由于报销制度中的不利因素、患者量的降低和企业间的竞争等,新药研发的收入回报环境也不容乐观。虽然我们预计2010 - 2020年的研发回报相对与2000-2010年会有所提高,但实际上二者之间的变化微不足道。此外,影响研发回报重要的不利因素之一在于那些失败的研发产品,特别是那些已经达到后期试验阶段的药物;这些药物的成本每年估计就占到了400亿美元以上。
 
  医生/医院的效率。医疗领域的一项特别挑战,依然是医生的医疗实践明显滞后于新药和新治疗方法的获批。因此,许多医疗领域的机器学习和人工智能专家正不断鼓励主要的医疗服务供应商,让在其工作流程中融入现代的机器学习工具,以使其充分利用收集到的和已发表的海量医疗数据存储。
 
  机器学习和人工智能可有望降低药物发现和医疗实践之间的时间差;与此同时,它们还能对治疗进行优化。例如,从北美放射学会2009年对肝胆放射的研究可见,23%的第二意见会改变诊断结论,而这也是专注于医学影像的机器学习公司有望能解决的领域。此外,那些致力于利用机器学习在基因组层面进行疾病判断的公司,例如Deep Genomics等,正帮助供应商定位,以提供更有效和更有针对性的治疗。
 

 

我要评论
  • 英特尔第三季度营收137亿美元,同比增长3%

    第三季度的业绩表现,体现了公司执行力的提升以及在战略重点上的稳步推进。人工智能正在加速计算需求,并在我们的产品组合中创造极具吸引力的机会,包括公司的核心x86平台、专用ASIC和加速器方面的新业务,以及晶圆代工服务。
    英特尔人工智能晶圆代工
    2025-10-25 11:59:19
  • 制造业与AI“双向奔赴”成大势,共促中国“智造”升级

    在人工智能浪潮席卷之下,中国制造业正迎来智能化升级的关键机遇期。制造业企业拥抱AI的意愿高涨,实践从试点应用迈向系统布局,例如宝钢利用高炉大模型优化能效、美的集团巨额投入AI研发。
    制造业人工智能智能体
    2025-10-23 17:02:07
  • 德国Neura机器人中国总部落地萧山

    姜永柱代表区委区政府对Neura机器人中国总部的正式启动及远道而来的领导嘉宾表示诚挚祝贺和热烈欢迎。他说,此次Neura机器人中国总部的落户,不仅为萧山具身智能产业注入了强劲动能和智能基因,更将带动上下游产业链集聚发展,助力萧山打造具有国际影响力的智能机器人产业高地。
    人形机器人人工智能
    2025-10-23 09:57:32
  • 未来将由“光”书写:光纤成为人工智能经济的核心支柱

    研究显示,到2030年,全球人工智能应用可能需要超过1亿英里的长途光纤和数千万英里的城域光纤。随着数据量的快速增长——预计从2020年的约64ZB增长到2030年的200ZB以上——超大规模企业正在进行创纪录的资本投入,以满足日益增长的计算和网络需求。
    光纤人工智能
    2025-10-23 09:01:55
  • 人工智能在制造业的新浪潮

    调查数据显示,95%的制造企业已经在AI/ML领域投入或计划在未来五年内进行投资。这一比例表明,人工智能应用在制造业中已趋于普及,并正由“试点探索”向“系统化整合”转变。
    人工智能AI赋能智能制造
    2025-10-21 09:25:54
  • OpenAI联合创始人:人工智能代理真正发挥作用还需10年

    OpenAI联合创始人预估,要系统解决上述所有问题,大约还需要十年时间。尽管众多投资者将2025年称为“智能体之年”,但现实发展仍面临显著挑战。广义上,AI智能体被定义为能够自主执行任务的虚拟助手,具备问题拆解、方案规划与自主实施的能力。
    OpenAI人工智能
    2025-10-20 10:58:05
版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了