正在阅读:谷歌起草首部机器人宪法,保障人类安全

谷歌起草首部机器人宪法,保障人类安全

2024-01-12 10:59:28来源:OFweek机器人网 关键词:机器人自动化机器人阅读量:22952

导读:机器人宪法为LLM模型设置了护栏,确保其生成的任务建议不涉及人类、动物、尖锐物品等不安全内容,同时编程限制了机器人关节的力,并添加了人类控制的物理开关。
  安全问题,一直是机器人的核心与焦点命题。
 
  近日,谷歌DeepMind团队发布了三项重要进展:自动化机器人训练系统AutoRT、机器人速度优化系统SARA-RT和机器人泛化系统RT-Trajectory,这三项新系统分别从数据采集、决策速度和泛化能力等方面,帮助提升现实世界中机器人的智能水平。
 
  (1)AutoRT:自动化机器人数据收集系统
 
  AutoRT是一个机器人的数据自动采集系统。它整合了大规模的基础模型,如大型语言模型(LLM)、视觉语言模型(VLM)和机器人控制模型(RT-1、RT-2),通过这一系统,机器人可以部署到全新环境中,并采集各类训练数据。
 
  它可以同时控制多台装备摄像头和机械臂的机器人,使其在不同环境中完成各种任务,收集数据。
 
  研究人员花费7个月时间,利用AutoRT系统控制机器人在办公室内完成任务,已经收集了涵盖77000次试验和6650个独特任务的多样化数据,同时控制最多可达52台机器人。
 
  AutoRT的优势在于,借助大规模基础模型的力量,可以显著提升机器人对人类语言指令的理解能力,并通过收集更丰富的数据,来训练机器人适应实际复杂环境。
 
  (2)SARA-RT:加速机器人决策速度
 
  SARA-RT优化了著名的Transformer模型在机器人领域的应用,使得机器人可以做出更快速的决策。
 
  之前基于Transformer的机器人控制模型RT-2,其决策速度受到计算需求的制约,SARA-RT通过一种新的微调方法,将Transformer的二次复杂度降低到线性复杂度,大幅减少了计算量,使机器人的决策速度提高14%,同时准确率还提高10%。
 
  这种可扩展的注意力机制,为将Transformer应用到更大规模的机器人中提供了可能。结合数十亿参数量的大型机器人模型,SARA-RT可以实现更快决策和更好性能。
 
  (3)RT-Trajectory:提高机器人动作泛化能力
 
  RT-Trajectory则在提高机器人泛化能力上有重要进展。对人类来说,擦桌子等动作简单直观,但机器人需要把抽象指令转化为具体运动。
 
  RT-Trajectory通过解释机器人的具体动作,来帮助其深入理解如何完成一个任务,而不仅是简单匹配指令和动作。它会自动为训练视频中的机器人运动添加2D轮廓,作为视觉提示,辅助模型学习。
 
  测试结果表明,在未见训练数据的41项新任务中,RT-Trajectory控制的机械臂任务成功率达到63%,较先进的RT-2模型提高一倍以上。这表明机器人的泛化能力得到显著提升。
 
  起草首部机器人宪法,机器人也有价值底线
 
  在推出一系列重要系统进展的同时,谷歌DeepMind团队还起草了世界上第一部面向智能机器人的宪法。
 
  这部机器人宪法的灵感来源于科幻小说家阿西莫夫的“机器人三定律”,主要核心是确保机器人不伤害人类。DeepMind将这一机器人宪法集成到AutoRT系统中,成为保障人类安全的关键组成部分。
 
  具体来看,机器人宪法为LLM模型设置了护栏,确保其生成的任务建议不涉及人类、动物、尖锐物品等不安全内容,同时编程限制了机器人关节的力,并添加了人类控制的物理开关。
 
  这无疑是科技发展史上的一个里程碑事件
 
  之前围绕着AI伦理的讨论多集中在算法本身是否存在偏见等问题上,很少涉及AI尤其是具有物理形态的智能机器人应该遵循哪些道德规范。
 
  首部机器人宪法体现了技术应该为人类服务的理念,而非单纯追求功能、效率,同时它也为未来机器人大规模应用时如何规避风险,保障人类安全和权益提供了宝贵借鉴。
 
  当然,作为第一步的尝试,这部机器人宪法还较为简单和原则,如何使其拥有更严密的逻辑体系,覆盖机器人可能的各种情形和伦理难题,还需要广泛讨论和不断完善。但第一步已经迈出,其影响力绝不会限于技术层面,也将推动人类思考我们应该如何与智能机器人共处。
 
  人类文明进步史,是一个不断学习、探索、犯错、修正的过程,当我们站在技术发展的新阶段,应当以积极、审慎的态度继续探索新可能。人与机器人的未来如何,你怎么看?
我要评论
文明上网,理性发言。(您还可以输入200个字符)

所有评论仅代表网友意见,与本站立场无关。

版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了