正在阅读:物联网挑战任务艰巨 四大难题亟待破解

物联网挑战任务艰巨 四大难题亟待破解

2016-07-15 11:12:41来源:未来物联网 原标题:物联网的四大难题:不解决这些,谈何智能化 关键词:物联网传感器数据阅读量:32273

导读:物联网(IoT)承诺要把人们身边的所有事物都智能化——冰箱、汽车、建筑物甚至油田,一切都将走向智能化,但物联网也有其未解的四大难题。
  【中国智能制造网 市场分析】本着要对消费产品、卫生保健、零售、生产等方面积极改革的信念,物联网(IoT)承诺要把人们身边的所有事物都智能化——冰箱、汽车、建筑物甚至油田,一切都将走向智能化。但物联网也有它的阴暗面;如果我们不能解决它带来的问题,那我们就有大麻烦了。
  
物联网挑战任务艰巨 四大难题亟待破解
 
  想要弄清物联网到底有什么样的隐患,简单的方法就是从它的配置下手。让我们来假想以下场面:有一个大型食品仓库和配送中心,两者都采用了联网设备来维持各个区域温度,例如恒温冷藏族聚居区、常温区和冷冻区。
  
  配置要求包括以下:
  
  几十个食品区域,排放要保证能地利用能源;
  
  仓库里要装几千个恒温计还有通风设施和湿度传感器
  
  仓库和配送中心外围要安装几百个传感器,例如墙上、屋顶、通风口等等;
  
  几十个供货商负责提供设备和传感器;
  
  实时气候变化通知,以免仓库遭到不测;
  
  排查一切可能会引起温度失常或通风故障的安全漏洞和故障。
  
  现在让我们来看看物联网的四大挑战,以及如何解决这些问题。
  
  问题1:对数据理解欠缺
  
  你手里掌握着很多数据并不代表你能理解和活用它们。因为在以上案例中物联网设备使用的区域广、种类多,一个供货商很难为整个仓库给出好的解决办法。就算有人给出来了,他的方案也很有可能会被推翻重来,这样单单成本就已经高得离谱了。
  
  想要为仓库打造一个、安全的物联网环境,那就必须要建立P2P网络,每一个商家提供的设备都能和别的商家的设备交换和交流信息。然而在供应商如此之多、而且仓库中还保留了部分传统设备的情况下。这套方案几乎是不现实的。如果不能更好地解决这个问题的话,那么仓库的物联网设计师面临的简直就是个现代巴别塔。
  
  要保证所有的数据都能互相理解沟通、发挥大效用的话,可行方案之一就是建立一个枢纽模型。我们可以建立很多物联网通路,中央服务器则负责全时段接收来自各个设备和传感器的数据。规则引擎专门负责分析这些数据,然后集线器把正确的指令发送给接受控制器,比如由于阳光东南部外墙温度较高,需要立即降低区域2的冷藏温度。
  
  这种集线器必须能够翻译翻译不同种类的数据和单位,例如从摄氏度到华氏度。它还必须配备一个通用数据模型,这样才能比较和整合来自不同来自不公供应商的设备的数据信息,于是才能保证系统能够理解数据。
  
  问题2:信息量实在太大
  
  有些情况下,由于整个系统的数据量实在太大,把数据通过网络传送到某个中央服务器是根本不可能的。举个例子,单单是装在仓库墙上的某一个传感器,它要采集的数据就有温度、湿度、硬件版本、软件版本、剩余电量、位置变动等等,你要是想听的话我还有一大串能讲。
  
  这些信息可能每30秒钟都会更新一次,或者可能由于环境要求,几秒钟就得更新一次。但是由于信息量实在太大,把这些数据全部发送到中央服务器是不可能的。而且整个仓库还不止这一个传感器,全部加起来大概有好几千个;它们可能连型号都不一样。
  
  这时候我们就需要信息整合方案,保证系统能够筛选出必要信息,转换成通用数据模型,然后下达报告、维修等各种指令。比方说,我们案例中的仓库可以仅通过区域3外墙上的50个传感器就判断出整个区域3的内外温度平衡状态。
  
  问题3:安全性
  
  之前我们说,P2P模型物联网对于我们案例中的仓库或是在任何物联网的大面积使用案例中都至关重要。但是这个方案也会带来巨大的安全隐患。
  
  整个系统的安全性取决于全系统中安全差的那个设备。如果某一个供应商提供的设备安全性较差,那么其他的供应商提供的设备再安全也没用;一个设备出错,可能就会引起意想不到的蝴蝶效应。举个例子,一个有安全漏洞的设备可能会向设备汇报错误的室外温度,造成设备下达调温指令错误,整个区域的温度出错,于是区域里的食品也全部都坏了。
  
  想要解决这个问题的话,整个仓库的P2P物联网模型必须采取某种方式,好让系统能通过确认某个传感器附近的传感器数据来二次检查该传感器给的数据。举个例子,如果某一个室外传感器测出的温度特别高,而它附近的传感器给的温度却都普遍比它低的时候,系统就不该仅针对该传感器给的数据立刻下达温度调节指令。系统应该发送警报,验证该传感器的可靠性并再次确认和比较其周边传感器所给的数据。
  
  通过确认周边传感器的数据来验证数据可靠性是个非常实用的办法。除此之外,我们还可以让系统通过回顾历史数据中的异常读数,判断这些异常是否和气候情况、库存量、年份月份、一天中的时间点等因素有关。
  
  问题4:设备出问题
  
  物联网还有一个弊端,我称之为神经病设备,指的就是物联网设备或是传感器莫名其妙地突然出故障,开始向系统发送错误的读数。这种设备的神经病症状有很多潜在原因;有可能的有软件bug、电量低下、或是设备本身有缺陷等等。比较罕见的原因也可能是装修工不小把油漆洒到了设备上,遮住了传感器的某块夹板。
  
  虽说这些神经病设备并不会对系统造成外在的安全威胁,但它们的破坏力是不可估量的。比如在我们的仓库案例中,如果管理员没有按照我们之前的提议做好保险措施的话,这种故障可能就会让某个区域的食品全部变质。就如我们之前所说,提防这些神经病设备和提高系统安全性的办法是可以通用的。比较历史异常读数、确认周边传感器读数等,这些方案都能有效地防止系统做出毁灭性的决定或是下达危险指令。
  
  很多企业都认为物联网是个商机,他们可以把物联网运用到现有的产品中。而在这些野心勃勃的计划成真之前,物联网设计师必须清楚物联网的弊端和危险性。知道简单也重要的方法是什么吗?首先要谨慎选择你的供应商。记得要选择能整合和扩展的平台,开发通用数据模型。总之每一步都千万要谨慎,要预料到坏的情况,制作出完善的解决方案。有了这些,你才能成功。
我要评论
  • 人工智能和物联网如何协作以实现更智能的技术

    人工智能与物联网的融合代表着科技发展的新方向。物联网通过分布在各处的传感器、设备和网络基础设施,持续生成海量的实时数据。而人工智能则通过机器学习与深度学习算法,对这些数据进行分析、建模与优化。
    人工智能物联网
    2025-10-20 10:57:54
  • 从原始数据到实时洞察:释放物联网分析的潜力

    部署物联网传感器和连接只是第一步。真正的挑战在于将原始数据转化为可操作的洞察。即使是规划最完善的网络,如果没有坚实的分析层,也无法带来投资回报率。
    物联网物联网传感器
    2025-10-14 13:25:37
  • 工业 5.0 揭秘:传感器和物联网如何彻底改变数据管理

    如今,全球部署了数十亿台数字设备和传感器,它们正在持续收集海量数据。物联网设备在将数据从传感器传输到平台的过程中发挥着重要作用。农业领域就是一个很好的例子,土壤健康监测传感器收集氮、磷、钾等营养水平的数据。这些传感器甚至可以从最偏远的田地收集数据,但如果没有物联网设备将数据传输给专家,农民就无法获取这些信息。
    工业5.0传感器精密机械协同
    2025-10-13 13:33:02
  • 具身智能产业迎政策东风,传感器行业有望迎来爆发

    目前,我国具身智能机器人产业正在从硬科技突破和场景化落地双向发力,不少地方都在政策和资源方面,积极布局推动。
    具身智能传感器
    2025-10-06 14:11:52
  • AI、物联网、大数据如何重塑现代商业

    智慧商业的真正潜力在于多种技术的融合应用,而非单点突破。当AI、物联网、大数据和云计算等技术深度融合时,它们催生出全新的商业模式。
    物联网人工智能区块链
    2025-09-24 09:11:12
  • 中国移动灵犀电子导盲犬发布:支持主动导航、避障内置大模型

    中国移动具身智能产业创新中心重磅发布“灵犀”电子导盲犬具身智能产品。“灵犀”电子导盲犬运用激光雷达点云与视觉单目三维重建的融合技术,实时获取所处的经纬度信息,构建高精度地图。
    中国移动灵犀电子导盲犬传感器
    2025-09-17 09:11:43
版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了