正在阅读:谷歌人工智能新目标已出 或将回归软件本身的突破

谷歌人工智能新目标已出 或将回归软件本身的突破

2016-11-29 10:17:31来源:新智元 编辑:大Z 关键词:生物识别语音识别机器人阅读量:30475

导读:迄今为止,机器学习的专家倾向于聚焦那些为特定任务开发的AI应用,比如人脸识别、自动驾驶、语音识别甚至是搜索。
  【中国智能制造网 技术前沿】想象AI的未来是很有趣的:家庭服务机器人、亚马逊的智能家庭中枢(Echo)等设备将走进每家每户,还有无人机快递和更加的医学诊断。这些吸人眼球的消费应用充斥着公众的想象,以至于大家都忽视了AI对另一个领域的颠覆——软件本身的发展。
  
谷歌人工智能新目标已出 或将回归软件本身的突破
 
  想象一下,如果计算机自己能理解自己,它们可以做些什么?用不了多久,计算机就能做到这件事。并且,这不是在描述遥远的未来,而是触手可及的现在,使用时下现有的技术就能达到。
  
  迄今为止,机器学习的专家倾向于聚焦那些为特定任务开发的AI应用,比如人脸识别、自动驾驶、语音识别甚至是搜索。但是,如果这些类似的算法能够在不需要人为帮助、解释或者干预的情况下,理解它们自身的代码结构呢?正如他们理解人类的语言和图像一样。
  
  如果代码开始对自己进行分析、自我修正并提升,且速度比认为的更快,那么技术的突破可能会来得更快。由此带来的可能性是无止境的:医学的进步、更加自然的机器人、更智能的手机、更少bug的软件,更少的银行欺诈等等。
  
  人工智能具有解决软件开发中的一个古老问题的潜力。代码编写或操纵其他代码的能力的概念已经存在了很长时间,一般称为元编程(它实际上起源于20世纪50年代末的Lisp)。它解决的难题,目前都还在人们的想象之中。
  
  但是,现在人工智能让改变发生了。
  
  使用人工智能,计算机能够理解一个软件开发项目从无到有的发展历史过程中的所有代码,并立即改进或者删除单独一行代码中的bug,不管是用什么编程语言。即便是一个缺乏经验的或者中等水平的程序员都能讲清楚让计算机自我编程的原理。由此,一个癌症项目的研究可能几天或者几个月就能完成,而不需要花费好几年的时间,这将带来显著的进步。
  
  今天,这项终将会带来颠覆性改变的技术尚处在萌芽时期,但是,它已经开始生长。比如,谷歌的TensorFlow机器学习软件,让每位程序员都能将神经网络直接融入到所开发的APP中,让APP拥有识别图片中的人和物体的能力。要把这些想法变成现实,你将不再需要一个博士学位。让业余人士也可以修正程序,这可能会成为AI发展历史上大的突破。
  
  谷歌的目标:大部分代码都不需要人为编写
  
  国外科技记者StevenLevy今年6月在他刊于BackChannel的文章《谷歌如何将自己重塑为一家“AI为先”的公司》(How GoogleIs Remaking Itself AsA" Machine Learning First"Company)中提到,谷歌大脑负责人Jeff Dean表示,随着他和团队对机器学习了解得更多,他们利用机器学习的方法也更加大胆。“以前,我们可能在系统的几个子组件中使用机器学习,”JeffDean说:“现在我们实际上使用机器学习来替换整套系统,而不是试图为每个部分制作一个更好的机器学习模型。”Levy在文中写道,如果现在让JeffDean改写谷歌的基础设施,大部分代码都不会由人编码,而将由机器学习自动生成。
  
  谷歌的代码bug预测系统,使用一个得分算法,随着commits变得越来越旧,它们的价值越来越小。
  
  认为计算机自我编程离我们还很远?如果我告诉你,一些大公司,比如谷歌,已经开始在内部的项目管理系统中尝试使用这一概念,你可能会觉得震惊。但是,谷歌确实已经开发了一个bug预测程序,使用机器学习和统计分析,来判断某一行代码是否存在瑕疵。谷歌工程师、W3C的联合主席IlyaGrigorik也开发了一个开源版本的bug预测工具,目前已被下载2万次。
    
  另一个例子来自Siri的继承者——Viv。Wired近的一篇报道中写道,Viv不仅使用一系列的自然语言处理来实现语言识别,还基于英语词汇建立了复杂的自适应性计算机程序。代码自己写代码(Codewritingcode)。由于被写入的代码是经过Viv的开发人员自己训练和专门化的,所以这里的“写代码”并不是我们通常所说的写代码的能力,但这确实是一个大的进步。
  
  在这个方向上,另一个大的进步来自非专业领域。Emil Schutte曾有过一句非常具有挑衅性的言论:厌倦了写代码?我也是!让Stack Overflow来做这件事吧。他分享了一个例子来证明这一概念,从StackOverflow的大型编程数据库中提取完整的工作代码,来提供完整的功能代码块,但是,这样得到的模块还是基于已经写好的代码。
  
我要评论
版权与免责声明:

凡本站注明“来源:智能制造网”的所有作品,均为浙江兴旺宝明通网络有限公司-智能制造网合法拥有版权或有权使用的作品,未经本站授权不得转载、摘编或利用其它方式使用上述作品。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:智能制造网”。违反上述声明者,本站将追究其相关法律责任。

本站转载并注明自其它来源(非智能制造网)的作品,目的在于传递更多信息,并不代表本站赞同其观点或和对其真实性负责,不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、平台或个人从本站转载时,必须保留本站注明的作品第一来源,并自负版权等法律责任。如擅自篡改为“稿件来源:智能制造网”,本站将依法追究责任。

鉴于本站稿件来源广泛、数量较多,如涉及作品内容、版权等问题,请与本站联系并提供相关证明材料:联系电话:0571-89719789;邮箱:1271141964@qq.com。

不想错过行业资讯?

订阅 智能制造网APP

一键筛选来订阅

信息更丰富

推荐产品/PRODUCT 更多
智造商城:

PLC工控机嵌入式系统工业以太网工业软件金属加工机械包装机械工程机械仓储物流环保设备化工设备分析仪器工业机器人3D打印设备生物识别传感器电机电线电缆输配电设备电子元器件更多

我要投稿
  • 投稿请发送邮件至:(邮件标题请备注“投稿”)1271141964.qq.com
  • 联系电话0571-89719789
工业4.0时代智能制造领域“互联网+”服务平台
智能制造网APP

功能丰富 实时交流

智能制造网小程序

订阅获取更多服务

微信公众号

关注我们

抖音

智能制造网

抖音号:gkzhan

打开抖音 搜索页扫一扫

视频号

智能制造网

公众号:智能制造网

打开微信扫码关注视频号

快手

智能制造网

快手ID:gkzhan2006

打开快手 扫一扫关注
意见反馈
我要投稿
我知道了